首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17493篇
  免费   1393篇
  国内免费   1275篇
工业技术   20161篇
  2024年   25篇
  2023年   306篇
  2022年   433篇
  2021年   505篇
  2020年   574篇
  2019年   447篇
  2018年   391篇
  2017年   540篇
  2016年   534篇
  2015年   590篇
  2014年   840篇
  2013年   829篇
  2012年   1121篇
  2011年   1302篇
  2010年   862篇
  2009年   1015篇
  2008年   836篇
  2007年   1055篇
  2006年   1024篇
  2005年   844篇
  2004年   767篇
  2003年   778篇
  2002年   684篇
  2001年   638篇
  2000年   608篇
  1999年   386篇
  1998年   339篇
  1997年   292篇
  1996年   249篇
  1995年   244篇
  1994年   175篇
  1993年   132篇
  1992年   153篇
  1991年   147篇
  1990年   175篇
  1989年   142篇
  1988年   42篇
  1987年   22篇
  1986年   13篇
  1985年   8篇
  1984年   14篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   8篇
  1979年   14篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
2.
《Ceramics International》2021,47(20):28203-28209
Vanadium carbide (VC) as excellent ceramic and functional material is usually prepared by carbothermal reduction of V2O5 which must be extracted from a typical V slag by complex processes. Pollutants, such as ammonia-nitrogen wastewater, NH3 and CO2 are inevitably discharged. A novel and green method for VC preparation was proposed by one-step co-electrolysis of soluble NaVO3 and CO2 in molten salt. It was found that VC with high purity was easily obtained by reducing electrolysis temperature and CO2 flow rate to 600 °C and 10 mL min−1 at 3.0 V. Besides VC with particles and layered stacking structure in products, a small amount of carbon and oxygen elements existed. The atomic percentage contents of C, V, and O elements in VC were about 50.0%, 44.5% and 3.8%, respectively. During electrolysis, CO32− and VO3 was reduced at about −0.55 V (vs. Ag/AgCl) and −1.38 V (vs. Ag/AgCl), respectively. CO32− ions were more easily reduced than VO3, and was firstly reduced to CO22− and then converted to C. Then, VC was prepared by two routes from CO2 and NaVO3. One route is that VO3 ions are firstly electroreduced to VO2 ions and then are further electroreduced to VC with C. Another route is that VO3 ions are electroreduced to V which in-situ reacted with C to VC. Both VO3 and CO32− ions are electroreduced by two-step process. In final, VC is in-situ deposited on cathode. It provides a novel and green way to prepare VC and also achieves the high value-added utilization of vanadium slag and CO2.  相似文献   
3.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
4.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
5.
Novel TiC-based composites were synthesized by reactive hot-pressing at 1800 °C for 1 h with ZrB2 addition as a sintering aid for the first time. The effects of ZrB2 contents on the phase composition, microstructure evolution, and mechanical properties were reported. Based on the reaction and solid solution coupling effects between ZrB2 and TiC, the product ZrC may be partially or completely dissolved into the TiC matrix, and then phase separation within the miscibility gap is observed to form lamellar nanostructured ZrC-rich (Zr, Ti)C. The TiC-10 mol.% ZrB2 (starting batch composition) exhibits good comprehensive mechanical properties of hardness 27.7 ± 1.3 GPa, flexural strength 659 ± 48 MPa, and fracture toughness of 6.5 ± 0.6 MPa m1/2, respectively, which reach or exceed most TiC-based composites using ceramics as sintering aids in the previous reports.  相似文献   
6.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
7.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
8.
Perfluorocarbon gas is widely used in the semiconductor industry. However, perfluorocarbon has a negative effect on the global environment owing to its high global warming potential (GWP) value. An alternative solution is essential. Therefore, we evaluated the possibility of replacing conventional perfluorocarbon etching gases such as CHF3 with C6F12O, which has a low GWP and is in a liquid state at room temperature. In this study, silicon oxynitride (SiON) films were plasma-etched using inductively coupled CF4 +C6F12O+O2 mixed plasmas. Subsequently, the etching characteristics of the film, such as etching rate, etching profile, selectivity over Si, and photoresist, were investigated. A double Langmuir probe was used and optical emission spectroscopy was performed for plasma diagnostics. In addition, a contact angle goniometer and x-ray photoelectron spectroscope were used to confirm the change in the surface properties of the etched SiON film surface. Consequently, the etching characteristics of the C6F12O mixed plasma exhibited a lower etching rate, higher SiON/Si selectivity, lower plasma damage, and more vertical etched profiles than the conventional CHF3 mixed plasma. In addition, the C6F12O gas can be recovered in the liquid state, thereby decreasing global warming. These results confirmed that the C6F12O precursor can sufficiently replace the conventional etching gas.  相似文献   
9.
A new technique of EDM coring of single crystal silicon carbide (SiC) ingot was proposed in this paper. Currently single crystal SiC devices are still of high cost due to the high cost of bulk crystal SiC material and the difficulty in the fabrication process of SiC. In the manufacturing process of SiC ingot/wafer, localized cracks or defects occasionally occur due to thermal or mechanical causes resulted from fabrication processes which may waste the whole piece of material. To save the part of ingot without defects and maximize the material utilization, the authors proposed EDM coring method to cut out a no defect ingot from a larger diameter ingot which has localized defects. A special experimental setup was developed for EDM coring of SiC ingot in this study and its feasibility and machining performance were investigated. Meanwhile, in order to improve the machining rate, a novel multi-discharge EDM coring method by electrostatic induction feeding was established, which can realize multiple discharges in single pulse duration. Experimental results make it clear that EDM coring of SiC ingot can be carried out stably using the developed experimental setup. Taking advantage of the newly developed multi-discharge EDM method, both the machining speed and surface integrity can be improved.  相似文献   
10.
In this study we analyze the optoelectronic properties and structural characterization of hydrogenated polymorphous silicon thin films as a function of the deposition parameters. The films were grown by plasma enhanced chemical vapor deposition (PECVD) using a gas mixture of argon (Ar), hydrogen (H2) and dichlorosilane (SiH2Cl2). High-resolution transmission electron microscopy images and Raman measurements confirmed the existence of very different internal structures (crystalline fractions from 12% to 54%) depending on the growth parameters. Variations of as much as one order of magnitude were observed in both the photoconductivity and effective absorption coefficient between the samples deposited with different dichlorosilane/hydrogen flow rate ratios. The optical and transport properties of these films depend strongly on their structural characteristics, in particular the average size and densities of silicon nanocrystals embedded in the amorphous silicon matrix. From these results we propose an intrinsic polymorphous silicon bandgap grading thin film to be applied in a p–i–n junction solar cell structure. The different parts of the solar cell structure were proposed based on the experimental optoelectronic properties of the pm-Si:H thin films studied in this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号